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Critical behaviour of a two-layer Ising system 

J Oitmaat and I G Enting'J 
t School of Physics, The University of New South Wales, Kensington, NSW 2033, Australia 
1 Department of Physics, King's College, Strand, London WC2R 2LS, UK 
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A h c t .  A two-layer king system, in which the coupling strengths within each layer are 
in general unequal and also differ from the coupling strength between the layers, is studied 
by means of a mean-field theory, a generalized mean-field theory, a scaling approach, and 
high-temperature series expansions. A number of predictions regarding the variation of 
the critical temperature and magnetization within each layer, with J ,  2 ,  the interlayer 
coupling strength, are made. 

1. Introduction 

As a result of the considerable amount of work that has been carried out in recent years 
we now have a rather good understanding of the critical behaviour of the Ising model 
in its standard form in which the lattice is infinite in extent in all directions. For reviews 
of the subject the reader is referred to articles by Fisher (1967a) and Domb (1974). 

Real crystals of course are not infinite in extent and we can expect modifications to 
the infinite crystal results due to both : (i) the finite size of the lattice ; and (ii) the presence 
of free surfaces. There exist reviews of such effects (Fisher 1971, Watson 1972). 

An early investigation of an Ising system which is of finite extent in one lattice 
direction is due to Ballentine (1964). Using high-temperature series expansions he 
studied a system of two infinite quadratic layers coupled together and concluded that 
this system had two-dimensional critical behaviour. This work was extended by Allan 
(1970) to films of up to five layers. In both of these investigations it was assumed that 
all the intralayer exchanges constants were equal, although for the case of two layers, 
Allan (unpublished) has also considered the case where the interlayer coupling differs 
from the coupling within layers. For the two-layer system where the coupling between 
layers differs from the coupling within the layers Abe (1970) and Mikulinskii (1971) 
have developed scaling theories describing the critical behaviour for small interlayer 
coupling. 

A different approach has been to study the effect of a free surface on an otherwise 
infinite lattice. Mills (1971) has investigated a semi-infinite Heisenberg model using a 
Landau-Ginsburg approach and has predicted the possible occurrence of long-range 
order in the surface layer at temperatures above the bulk transition temperature. 
Such a phenomenon apparently occurs in binary alloys (Hrajlund Nielsen 1973). The 
effect of a free surface has also been studied by Binder and Hohenberg (1972) by 
means of a Landau-Ginsburg theory, series expansions, and a scaling theory. A scaling 
theory for finite-size and surface effects has been developed independently by Fisher 
and co-workers (Fisher and Barber 1972, Barber and Fisher 1973). 
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The aim of the present work is to investigate the critical behaviour of a two-layer 
Ising system illustrated in figure 1. The system consists of two infinite quadratic lattices 
with exchange constants J, and J2 (with in general J, # J2) coupled by interactions of 
strength J, z .  We feel that this model is worthy of study for a number of reasons : 

(i) It is an obvious generalization of the work of Ballentine and ABan referred to 
above, to the case where the exchange constants are not all equal. The results m a y  be 
applicable to experiments (as yet future) on thin films of one material on another. 

Figure 1. The two-layer [sing system. 

(ii) It can also be used, less directly, as a model for general surface effects. It is to 
be expected that at a free surface the lattice parameters will differ from those of the 
bulk material. Thus one may expect that the coupling constants both within the surface 
layer (or layers) and between the surface and the bulk material may differ from the 
coupling constants in the interior. The significant feature of this model is that it repre- 
sents a coupling of two subsystems with different critical points. The behaviour of such 
systems is a question of general theoretical interest and the present model gives some 
indication of the type of behaviour that might be expected. 

(iii) In zero magnetic field the model can also be regarded as a staggered eight- 
vertex model with an applied electric field proportional to JI2. The exponents obtained 
in 5 4 indicate the diverse behaviour that may be expected in such systems. 

Since we are mainly concerned with exploring the general consequences of coupling 
between non-identical sub-systems, the most appropriate system for initial study is an 
Ising model. This has the advantage of comparative simplicity, an advantage which 
must however be set against the fact that except in rare-earth systems such as that 
studied by Hunt and Newman (1969) using a related coupled model, Ising models 
generally give a poor representation of real magnets. 

The Hamiltonian for the system can be written as 

A? = - 1 JijSiSj-mH 1 Si (1) 
<i j>  i 

where the spin variables take values Si = f 1, the first summation is over all nearest- 
neighbour pairs, denoted by ( i j ) ,  m is the magnetic moment per spin, and H is an 
external magnetic field which we assume to be the same at each site. The exchange 
constant Jij has the value 

if ( i j )  is in layer 1 

J.. I J  = I J 1  J2 if ( i j )  is in layer 2 (2) 

J I 2  if ( i j )  is between layers. 

In the absence of an exact solution, which is not known for this model, it would seem 



Critical behaviour of a two-layer Ising system 1099 

worthwhile to use simple closed-form approximations such as the mean-field approxima- 
tion (MFA). While it is known that MFA is quantitatively incorrect in the vicinity of a 
critical point it is nevertheless true that it usually gives a qualitatively correct picture 
of critical behaviour and we believe that it does so in the present case. In 9 2 of the paper 
we derive and discuss the results of MFA for the two-layer system. We also use MFA 
and a generalization of MFA to obtain a number of rigorous bounds for this system. 
In 9 3 we develop a scaling theory in which J12 is treated as a second symmetry-breaking 
field. We define a number of new critical exponents, obtain estimates of their values, 
and provide confirmation for some of the GMFA predictions of the previous section. 
In 9 4 we derive and analyse high-temperature series expansions. This approach again 
provides confirmation of some of the previous results and allows estimates of the critical 
temperature to be made for all values of J2/J1 and J1 2/J1. Finally in 0 5 we summarize 
our results and present our conclusions. 

2. The mean-field approximation 

The mean-field approximation replaces the coupling between spins by an interaction 
of each spin with an average field due to the other spins. It is obtained by replacing 
the exact Hamiltonian (1) by the effective uncoupled Hamiltonian 

XMPA = -m Hr"Si (3) 
i 

where the effective field HT'' is given by 

mHr" = m H + x  Jij(Sj). 
j 

The thermodynamic average spin ( S i )  then satisfies the equation 

( S i )  = tanh(/?mH;") = tanh 

(4) 

( 5 )  

where /? = l/kT We are then left with this set of nonlinear equations to solve for the 
average spin or magnetization of the system. 

In the present context the quantity ( S i )  can take two values, depending on whether 
site i is in layer 1 or layer 2. We denote these two values by u1 and c2 respectively. 
They are determined by the pair of equations 

u1 = tanh(4/?Jlal +fiJl2o2+fimH) 

u2 = tanh(/?J,,o, +4fiJ2u2+/?mH). 

In general this pair of equations must be solved numerically. 
The first point we make concerns the existence of a nonzero magnetization, or 

long-range order in the system in the absence of an external field (H = 0). For the 
special case J12 = 0, when the two layers are uncoupled, each layer will have its own 
critical temperature (given in MFA by Tl = 4J1/k, T2 = 4J2/k) below which long-range 
order occurs. If however the two layers are coupled, no matter how weakly, then from 
equation (6) we see that the two magnetizations u1 and u2 must be either zero or non- 
zero together so that it is not possible for long-range order to exist in one layer but not 
in the other. This behaviour can be understood physically in the following way. We 
suppose that the system is initially in the high-temperature disordered phase. As the 
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temperature is lowered to a critical temperature T,  the layer with the stronger exchange 
interaction (which we will call layer 1) will order. The effect of this on layer 2 will be 
equivalent to switching on an external field and thus layer 2 will immediately order as 
well. This can be shown rigorously by means of simple correlation inequalities. If the 
coupling J12 is weak however then the magnetization in layer 2 will be quite small 
until the temperature gets close to the original critical temperature of layer 2. 

We have solved the equations (6) numerically for zero field to obtain the variation 
of g1 and rs2 with temperature T for various values of the parameters x2 = Jz/J1 and 
x12 = JI2/J1. In figure 2 we show some results for the case x2 = 0.5. We also show 
the variation with temperature of the total magnetization per spin 

Q = ++Jl +aJ. (7) 

1 

Figure 2. The mean-field approximation for the single-layer magnetizations (broken curves) 
and total magnetization (full curve) for: (a) x2 = 0.5, x , ~  = 0.0: (b) x2 = 0.5, x12  = 0.01 ; 
(c) x2 = 0.5, x , ~  = 0.1; (d)  x 2  = 0.5, x12 = 0.5. 

We note that for weak interlayer coupling the long-range order in layer 2 decreases 
rapidly in the vicinity of T2,  the critical temperature of this layer in the uncoupled case. 
The total magnetization Q has a sharp kink near this temperature. This shows up well 
in figure 2(b). 

The critical temperature T,  in MFA is given by 

k T ,  - = 2 + 2 ~ 2 + [ 4 ( 1 - ~ : ) ~ + ~ : 2 ] ~ ' ~ .  
J1 

This shows that T,  increases with increasing interlayer coupling J ,  2 .  

The dimensionless susceptibility in zero field 
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is shown in figure 3, again for the case x2 = 0.5 and a series of values of x12. For xI2 = 0 
the susceptibility diverges at two critical temperatures Tl and T2. As soon as coupling 
between the layers is introduced the low-temperature peak becomes rounded and the 
high-temperature peak, which represents the true critical point, moves to higher tempera- 
tures in accordance with equation (8). _I , :‘i , 

x, 

0 I .o 0 I .o 

50.0 1 ,  J( ;I, , j! 
xo 

0 I .o 0 IO 
TI 7, T I  r, 

Figure 3. The mean-field solution for the zero-field susceptibility for: (U)  x2 = 0.5, x I 2  = 0.0; 
(b) x2 = Q5, x12 = 0.01; (c) X Z  = 0.5, ~ 1 2  = 0.1; (d) XI = 0.5, X I 2  = 0.5. 

Although the unusual thermodynamic behaviour shown in figures 2 and 3 is obtained 
from an approximate theory we believe that MFA gives a correct qualitative picture of 
the true behaviour of the model. 

It is known that MFA provides rigorous upper bounds for various thermodynamic 
quantities and for the true critical temperature (Fisher 1967b, Thompson 1971). The 
solutions ol ,  o2 of the MFA equations (6) are upper bounds for the magnetization of 
layer 1 and layer 2 respectively. The MFA critical temperature (8) is an upper bound 
for the true critical temperature and the high-temperature susceptibility obtained from 
equation (9) 

is an upper bound for the true high-temperature susceptibility. 
A lower bound on the critical temperature 

kT, - > 2,269 
Jl 

follows from the work of Griffiths (1967). 
Better bounds can be obtained by treating only some of the interactions by the 

mean-field approximation (Enting 1973a). In the remainder of this section we will 
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consider this approach. In particular we will treat the interlayer interactions J12 by 
MFA. 

Within this approximation we write the magnetizations D ,  and o2 as 

where U,, (/U, flmH) is the true magnetization of the simple quadratic lattice Ising model. 
The solution of this pair of equations gives upper bounds for the magnetization on 
each layer. 

From the equations (1 1) and the standard result 

we obtain the following results for the dependence of ol and o2 on J12 at the true critical 
temperatures T, and T2 of the uncoupled quadratic layers. 

If J ,  > J2  we find 

If J1 = J 2  we find 

- ~ p - 1 )  = 51/14 1 2  (14) 

at T = Tl = T2. 
These expressions for cl, g2, D are all upper bounds for the appropriate subsystem 

magnetizations once the appropriate amplitudes are included and so the exponents 
obtained from this generalized mean-field approximation are lower bounds for the 
true values. 

The high-temperature susceptibility in this generalized mean-field approximation 
can be obtained from equations (1  1)  as 

where xSq(BJ) is the true high-temperature susceptibility for the quadratic lattice. The 
temperature T* at which zGMFA diverges is an upper bound for the true critical tempera- 
ture T,. 

Setting the denominator of (15) equal to zero and using the limiting form 

we obtain the results 

If we define an exponent 4 by 
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then since T,  e T* we obtain an upper bound for 4:  
4 d ;  J 1  z J z  

4.G 2; J1 = J z .  

We have calculated T* from the equation 

1103 

(19) 

(kT*IZ = J:zXs4(Jl/kT*)Xs4(J2/kT*) (20) 

using the representation of x(K)  given by Sykes et a1 (1972). The results are plotted in 
figure 4. As J z  4 J 1  the region of validity of the 4 = behaviour decreases. Outside 
this region the T* variation can be described by a behaviour. 

4214 

Figure 4. Estimates of critical temperature T* from generalized mean-field approximation 
for various values of x2 (in brackets). 

In terms of the susceptibility exponent y = 2 we have 

from GMFA. This result also follows from MFA (equation (8)) with y = 1. Scaling theory 
predicts the same connection between the exponents 4 and y .  

3. Scaling theory 

The scaling approach to critical phenomena has been successfully used in many papers 
since the pioneering work of Widom (1965), Domb and Hunter (1965), Kadanoff 
(1966) and others. The recent extensive discussion by Hankey and Stanley (1972) is 
based on the use of generalized homogeneous functions. The assumption is that the 
free energy satisfies the equation 

(21) 
for any 2, where t = T-  T,. From this it is simple to relate a and 6 to the usual critical 

AG(t, H) = G(A"t, AbH) 
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exponents tl and 6 ,  and for the two-dimensional Ising model it follows that U = 4, 
b = #. 

For the two-layer model, in addition to  the field H, it is convenient to  regard J12 as 
a second symmetry-breaking field. This is reasonable since the type of ordering changes 
discontinuously as J1 passes through zero. The order parameter conjugate to J1 is 
the interplane correlation function. 

where S1 is a spin on layer 1 and S ,  the nearest-neighbour spin on layer 2. 

the most singular part of the free energy by a generalized homogeneous function : 
We thus generalize equation (21) and make the assumption that we can represent 

(22) AG(t, H, J12) = G(l"t, AbH, ACJl2) near T2, with t = T - T2 
and 

AG(T, H, J12) = G(A'i, AbH, A'J12) near T,, with T = T - Tl . (23) 

We expect that G and G will be different functions, and in general c # E. For J12 = 0 
both the transitions are two-dimensional Ising model transitions so the exponents a 
and b will take the same values as in (21). We note that in (22) and (23) the exponents 
describe only the singular part of the behaviour, for instance at T = T2 the magnetiza- 
tion does not go to zero but it does have a singularity with exponent /? = ( 1  - b)/u = 9. 

The notation to be used for the exponents follows that used by Enting (1973b) in 
connection with the modified F-model. In that model an applied electric field corres- 
ponds to a two-spin interaction which couples two subsystems and is thus closely 
related to J12 of the present model. Exponents obtained by considering derivatives 
of G with respect to J12 are distinguished by the subscript e whereas exponents obtained 
from the field H are given the subscript m. 

We first consider the behaviour of the system near T = T2. Defining an exponent 
8, by 

Q ( -  t)" (24) 
and using the result that for J12 = 0 

Q = o1u2 - constant x ( -  t ) l /*  

gives Be = 3.  From (24) on the other hand we get by differentiating with respect to J,2 

Q(t, H ,  J12) = ?-'Q(L"t, AbH, l'J12). 

Putting H = J12 = 0 and L = ( -  l/t)lia gives 

Q(t, 0,O) = ( -  t)(' -'""Q( - 1,0,0) 

whence 

1 - c  1 
- = -  ie c = E. 

a 8  

Having determined the value of c we can now use the scaling form (21) to determine 
the behaviour of other quantities near and at T = T2. We find that 
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and at r = 0 

C b e = - - - - -  - 15.  
1 - c  

This last result is in agreement with equation ( 1 3 )  of the previous section. 

first the exponent i; in equation (23). Putting H = 0 and 1 = J;;/' in (23) gives 
In order to determine the behaviour of the system near T = Tl we need to determine 

G(f ,  0, J12) = 2- 'G(J;;"f, 0, 1 ) .  

If a singularity occurs in G for nonzero J , ,  it must be at one particular value of J;,""f, 
ie at 

(26) T,  = T' = constant x J:'$. 

Comparing this with equation (18) gives E/a = 4, and assuming the value of 4 = 4 for 
the crossover exponent gives 

E=L 16. (27) 
The result 4 = can be obtained by generalizing the renormalization group argu- 

ments of Grover (1973). One takes a system of two independent layers and treats J , ,  
as a perturbation. One then considers how the perturbation must behave under the 
renormalization transformation if a sequence of transformations is to approach a fixed 
point. For J1 = 5, one has, in common with the anisotropic king model, the require- 
ment that the perturbation S(k)S(k)J, ,  approaches a fixed point and the transformation 
of the S(k)  is that appropriate to the two-dimensional Ising model. If Jl # J ,  the S(k)  
for one layer is essentially constant under the renormalization transformation and we 
require a fixed point for S(k)J12, which implies that 4 is half the anisotropic Ising model 
value. 

Having obtained the exponent i; we can at  once obtain from the scaling form (23 )  
the following results : 

and at f = 0 

Q - J:ide 
with 

This last result is again in agreement with equation ( 1 3 )  of the previous section. 
The temperature dependence of derivatives of the susceptibility with respect to JI2 

is also of interest. From (23) we find 
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For I > 0, at least, this seems to hold only for even n, and for n = 2j+ 1 one has, in 
agreement with the expansion of (18) 

g(2j+ 1) = g(2j). (32) 
In fact for n = 1,2,3 the values z ,  I, $can be shown to be upper bounds for the exponents 
by generalizing the work of Liu and Stanley (1972). 

The fact that this prediction of g(2n + 1) = g(2n) is the same as obtained from GMFA 
shows that this type of stepwise increase is not inconsistent with the generalized homo- 
geneous function hypothesis that we have used to formulate scaling theory. This is 
because, as shown by Enting (1973a), this type of susceptibility approximation can be 
derived from a variational free energy. Simple algebraic manipulation shows that if 
the two-dimensional Ising model free energy is a generalized homogeneous function 
then the GMFA free energy is a generalized homogeneous function of the type assumed 
above and with exponents a = 4, b = E, i? = & as above. 

4. High-temperature series 

A different approach, which has been used with considerable success for many years in 
the study of cooperative lattice models, is the method (or methods) of exact series 
expansions. For reviews of this approach we refer the reader to the article by Fisher 
(1967a) and the recent book by Domb and Green (1974) in which methods of series 
derivation and analysis are discussed. 

The derivation of high-temperature series for the two-layer system follows completely 
standard lines and we omit details here. In zero applied field the logarithm of the partition 
function becomes 

1 - In Z = In 2 +In cosh pJ1 +In cosh pJ2 + $ In cosh pJ12 + c afnnv:vTu; 
N f,m.n 

where 

cl  = tanhpJ1 

u2  = tanhpJ, 

u I 2  = tanh pJ12. 

The dimensionless susceptibility, defined by 

is given by 

(33) 

(34) 

By computer counting of graphs we have evaluated the coefficients almn for 
I+m+ n < 12 and bfmn for l+m+n < 11. The values are given in the appendix. The 
coefficients alm2 for l+m = 12 can be obtained indirectly, as indicated below, and are 
included in the table. 

A number of checks on the correctness of our results are available. For JI2  = 0 the 
series should reduce to the known result for the simple quadratic lattice, which it does. 
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For J1 = J 2  = .Il2 the model reduces to the case for which series expansions have been 
previously derived by Ballentine (1964) and Allan (1970). Again exact agreement is 
obtained with the first ten terms of xo given by Ballentine and the 1 lth term supplied 
by M E Fisher (private communication). 

A number of other checks, related to the derivatives of the free energy with respect 
to J12 (the gap exponent series) are available. In particular using the result 

and the correlation function series of Fisher and Burford (1967) we can obtain the 
coefficients alm2 for m+n d 12. From a simple generalization of the work of Liu and 
Stanley (1972) we obtain the result 

where bl is the susceptibility coefficient for the simple quadratic lattice. Another check 
is obtained from the quantities 

The sums sm2 and sm3 can be derived from the coefficients given by Oitmaa and Enting 
(1972) for the anistropic Ising model, using correlation expressions of the type given 
by Liu and Stanley (1972) and Enting (1974). 

We have performed all these checks and in fact in so doing discovered several minor 
errors in the anisotropic Ising model coefficients given by Oitmaa and Enting (1972). 
The correct values are bP2 = 2784352, bes = 5440200. While these checks do not 
completely eliminate the possibility of errors their likelihood is certainly small. 

Having obtained the series in three variables the procedure adopted is to choose 
particular values for the parameters x2 = J2/J1 and x12 = Jlz/J1 and expand the series 
in a single variable v v l .  This yields a susceptibility series of the form 

with coefficients up to and including b, known. 
In view of the complex behaviour which this system can apparently show, as indicated 

in the previous sections, one can probably expect only limited success from series 
analysis. In particular the nature of the singularity, especially for J1 'v J 2  is expected 
to be rather complex. We therefore simplify our problems by using the 'universality 
hypothesis' (Kadanoff 1970) to assume that y = 2 for this model, independent of x2 
and x12. We then use the ratio and Pade approximant methods to obtain estimates 
for the critical temperature v, = tanh(J/kT,). 

In the ratio method, which has been extensively discussed by Gaunt and Guttmann 
(1974) one initially considers the ratios of successive coefficients p n  = b Jbn- 1. If the 
asymptotic form of the susceptibility is of the form (U, - v ) - ~  then 

p n = -  1+-+07 . 
0, ' [ 'il ( n ' ) ]  
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Since we are making the assumption y = 2 it is better to use the modified ratios 

P: = [l +(y- P n  1/41 - .;'[1+0($)], (37) 

In loose-packed lattices, such as the present case, the occurrence of an antiferro- 
magnetic singularity on the circle of convergence introduces odd-even oscillations into 
the ratios pn and p:. This difficulty can be partially overcome by considering the 
geometric mean of successive ratios (Stanley 1967). These are 

g p  = (&)1'2 - .-1[1+0(;)]. 

More refined estimates are obtained by taking pairs of gL2) and eliminating succes- 

(39) 

sively higher powers of (l/n). If 

gp' - 0; '[ 1 + O( link)] 
then 

We have used the quantities gik)  for k = 2 , 3 , 4  to obtain sequences of estimates for 
U,'. The results for the case x2 = 0.5, x12 = 0.2 are shown in table 1. It appears that 
we do not have enough terms for these sequences to have settled down to their limiting 
behaviour. 

Table 1. Ratio method estimates of U,- ' for the case x2 = 0.5, x 1  = 0.2 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  

b. 

3.2ooOO 
8.7ooOO 
25.2840 
70.4390 
196,713 
537.387 
1459.64 
3906.74 
1039 1.3 
21374.6 
71747.1 

1,9015 
2.1441 
2.3355 
2,3869 
2.4284 
24408 
2.4502 
2.45 1 1 
2.4529 
2.4521 

2,4801 
2.5234 
2,5027 
2.4969 
2,4783 
2.467 1 
2.4577 
2.4540 

2.5121 
2.48 17 
2.4605 
2.4405 
2.4361 
2.4382 

The other techniques that were used are based on the use of Pade approximants. 
We have followed the standard procedures of considering Pade approximants to the 
series for 

(ii) x(u)"y  
which should both have simple poles at U = U, if ~ ( o )  has the limiting form (uc - u ) - ~ .  
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We have also looked at the ‘exponent renormalized’ series 

(iii) x*(u) = 1 + brur/(-$), 
r 

This technique, due to Hunter and Baker (1973), will, for the case J12 = 0, transform 
a sum of two divergent terms with equal exponents y to two simple poles. 

In general the Pade approximant analysis did not yield satisfactory results. A useful 
test is the case x12 = 0 for which the critical points are known exactly. For x2 # 1 
these cases give a test of how well the various techniques can separate the effect of the 
two peaks. Pad& approximant analysis using the series (ii) gave the best results of the 
three approaches. The method worked quite well for all cases with x2 = 1.0, where 
there is only one singularity. The method also worked quite well for small values of x i ,  
where the two peaks are well separated. 

The overall estimates of u, obtained from the methods described above are presented 
in table 2. For J1 # J 2  it is apparent that there is a variation of T, as (T, - Tl) - gl’# 
with 4 < 1 but the T, estimates are not sufficiently precise for us to be able to estimate 4. 
For J1 = J 2  we have plotted v,(J12)-u,(O) against JtL’. This is shown in figure 5 and 
appears to confirm the scaling prediction of Abe (1970). The choice of u for the tempera- 
ture variable follows Enting (1974) where it was found that a similar choice of variables 
minimized the rate at which the larger J1 behaviour deviated from its limiting form. 

Table 2. Estimates of U,-’ for various values of x2, x,* obtained from: (1) ratio estimates 
using 81’ given by equation (40); 42) ratio estimates using gi4’ given by equation (40); 
(3) Pade approximants to exponent renormalized series: (4) Pad6 approximants to logarith- 
mic derivative series: (5) Pad6 approximants to f’’. Blanks indicate cases where no 
reasonably consistent estimates could be obtained 

XI 2 (3) (4) 

1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
0.9 
0.9 
0.9 
0.9 
0.9 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.2 
0.2 
0.2 
0.2 
0.2 

1 .o 
0.5 
0.1 
0.05 
0.0 1 
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Figure 5. Plot of o,(J,,)-u,(O) against Jti’ for the case J ,  = J,. Scaling theory predicts 
a straight line through the origin. 

We have also attempted to estimate gap exponents in order to test the scaling 
hypothesis of Q 4. 

For J1 = J z  we have ye = 3 and the series are equivalent to those considered by 
Enting (1973~). For J1 # J z  scaling predicts y e  = -$ at Tl and as might be expected 
this singularity was too weak to be separated from the generally complicated behaviour, 
and no useful estimates could be obtained. 

Since the series for x(’), x( ’ )  can be expressed in terms of the square lattice suscepti- 
bility we have ym = g(1) = a (.I1 # J2). Attempts to estimate g(2), g(3) by using the 
ratio method and constructing higher extrapolants using equation (40) met with only 
limited success. The estimates were somewhat irregular being consistent with g(3) = 
but indicating g(2)  c 3. The series are really too short to give any reliable indication 
of whetlier the stepwise scaling predictions of (31), (32)  are correct or not. 

5. Discussion and conclusions 

In this paper we have studied the critical behaviour of a two-layer king system in which 
the coupling strengths in each layer are in general unequal and also differ from the 
strength of the interlayer coupling Jlz. 

When .Il2 = 0 the system has two critical points and the susceptibility will diverge 
at two temperatures Tl and Tz (we take Tl > Tz). For any non-zero value of J12 the 
critical point at T2 will vanish, although the susceptibility may still show a rounded 
peak, while the critical point at Ti will become the only critical point and will shift to 
higher temperatures. This behaviour is clearly seen in the mean-field solution. 

Using a generalized mean-field theory, in which the interactions within layers are 
treated exactly while the interlayer interactions are treated by a mean-field approxima- 
tion we have obtained a number of results for the variation of T, and the magnetizations 
in each layer with J lz.  These predictions are in agreement with results obtained from 
a scaling approach. Using the scaling theory we have also investigated the temperature 
dependence of derivatives of the free energy and susceptibility with respect to J ,  z .  
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We have also used the technique of high-temperature series expansions to study 
the behaviour of this model. Although the series analysis has not been as successful 
as we had originally hoped some useful results have nevertheless been obtained. In 
particular we have been able to obtain the critical temperature for various values of 
the exchange constant ratios J2/J1, J12/J1. For J1 = J2 and J12 = qJl we have 
confirmed the scaling result of Abe (1970) for the variation of T, with q. We have also 
obtained estimates for the susceptibility and free energy gap exponents which, while 
somewhat irregular, are consistent with the scaling predictions. 

The most interesting behaviour of this system occurs below the critical temperature. 
Since low-temperature series are in practice almost always more irregular than high- 
temperature series it seems unlikely that series expansions will yield satisfactory results 
below T,. The situation is particularly difficult for lattices of low coordination number 
where a large number of high-field polynomials are needed to give a reasonable number 
of terms in the temperature grouping. It is expected that long series will be needed to 
represent the rapid changes near T2 and then to continue to represent the approach to 
the true critical temperature. The simplest approximation to the rounded peaks that 
are expected to occur in the specific heat and susceptibility is [(x - a)’ + S2]- with 6 
small. This is a product of two poles at a kid and it would seem to be extremely difficult 
to extrapolate between two closely spaced poles to obtain any indication of the true 
critical behaviour. On the other hand it should be possible to obtain some information 
concerning the heights of the peaks near T2 since the poles can be readily represented 
by PadC approximants. We hope to investigate this model by low-temperature series 
in future work. 

In our view the question of what happens when two subsystems, which each have 
a critical point, are coupled together is one of general theoretical importance and we 
believe the present work is the first investigation of such behaviour. Even when the 
two subsystems have the same critical point interesting effects can result, as exemplified 
by the eight-vertex model. The eight-vertex model can be regarded as two identical 
Ising models coupled by a four-spin interaction (Wu 1971, Kadanoff and Wegner 1971). 
It is in fact fairly simple to set up a correspondence between the present model and a 
staggered eight-vertex model. The details and consequences of this correspondence 
will be presented elsewhere. 

The work presented in this paper, although based on a simple and somewhat 
artificial model, shows that coupled cooperative systems are likely to exhibit a number 
of quite interesting effects. Although our motivation for this work has been primarily 
theoretical we have indicated several types of experimental systems in which such 
behaviour may occur. We hope that this work will act as a stimulus to experimentalists 
to investigate critical behaviour of coupled systems. 
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Zero-Jield free energy coe@cients a,,, 
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Coeficients for m > 1 are obtained from the symmetry relation 
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Initial susceptibility coeficients him,-continued 
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The result bimn = bmin is used to obtain coefficients for m > 1. 
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